Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Anticancer Res ; 44(3): 981-991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423659

RESUMO

BACKGROUND/AIM: Methionine metabolism contributes to supplying sulfur-containing amino acids, controlling the methyl group transfer reaction, and producing polyamines in cancer cells. Polyamines play important roles in various cellular functions. Methylthioadenosine phosphorylase (MTAP), the key enzyme of the methionine salvage pathway, is reported to be deficient in 15-62% of cases of hematological malignancies. MTAP-deficient cancer cells accumulate polyamines, resulting in enhanced cell proliferation. The aim of this study was to investigate the combined effects of the polyamine synthesis inhibitor SAM486A and the anticancer antimetabolite cytarabine in MTAP-deficient leukemic cells in vitro. MATERIALS AND METHODS: The leukemia cell line U937 and the subline, U937/MTAP(-), in which MTAP was knocked down by shRNA, were used. The experiments were performed in media supplemented with 20% methionine (low methionine), which was the minimum concentration for maintaining cellular viability. RESULTS: The knockdown efficiency test confirmed a 70% suppression of the expression of the MTAP gene in U937/MTAP(-) cells. Even in the media with low methionine, the intracellular methionine concentration was not reduced in U937/MTAP(-) cells, suggesting that the minimum supply of methionine was sufficient to maintain intracellular levels of methionine. Both U937/MTAP(+) and U937/MTAP(-) cells were comparably sensitive to anticancer drugs (cytarabine, methotrexate, clofarabine and 6-thioguanine). The combination of SAM486A and cytarabine was demonstrated to have synergistic cytotoxicity in U937/MTAP(-) cells with regard to cell growth inhibition and apoptosis induction, but not in U937/MTAP(+) cells. Mechanistically, SAM486A altered the intracellular polyamine concentrations and reduced the antiapoptotic proteins. CONCLUSION: Methionine metabolism and polyamine synthesis can be attractive therapeutic targets in leukemia.


Assuntos
Amidinas , Antineoplásicos , Indanos , Leucemia , Humanos , Citarabina/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Poliaminas , Metionina/farmacologia , Metionina/metabolismo , Leucemia/tratamento farmacológico
2.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000655

RESUMO

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Assuntos
Desoxiadenosinas , Metionina Adenosiltransferase , Neoplasias , Proteína-Arginina N-Metiltransferases , Purina-Núcleosídeo Fosforilase , S-Adenosilmetionina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/antagonistas & inibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias/genética , Neoplasias/fisiopatologia , Neoplasias/terapia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , S-Adenosilmetionina/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(52): e2311674120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109528

RESUMO

The tumor microenvironment (TME) is a dynamic pseudoorgan that shapes the development and progression of cancers. It is a complex ecosystem shaped by interactions between tumor and stromal cells. Although the traditional focus has been on the paracrine communication mediated by protein messengers, recent attention has turned to the metabolic secretome in tumors. Metabolic enzymes, together with exchanged substrates and products, have emerged as potential biomarkers and therapeutic targets. However, traditional techniques for profiling secreted metabolites in complex cellular contexts are limited. Surface-enhanced Raman scattering (SERS) has emerged as a promising alternative due to its nontargeted nature and simplicity of operation. Although SERS has demonstrated its potential for detecting metabolites in biological settings, its application in deciphering metabolic interactions within multicellular systems like the TME remains underexplored. In this study, we introduce a SERS-based strategy to investigate the secreted purine metabolites of tumor cells lacking methylthioadenosine phosphorylase (MTAP), a common genetic event associated with poor prognosis in various cancers. Our SERS analysis reveals that MTAP-deficient cancer cells selectively produce methylthioadenosine (MTA), which is taken up and metabolized by fibroblasts. Fibroblasts exposed to MTA exhibit: i) molecular reprogramming compatible with cancer aggressiveness, ii) a significant production of purine derivatives that could be readily recycled by cancer cells, and iii) the capacity to secrete purine derivatives that induce macrophage polarization. Our study supports the potential of SERS for cancer metabolism research and reveals an unprecedented paracrine crosstalk that explains TME reprogramming in MTAP-deleted cancers.


Assuntos
Ecossistema , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Purinas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Microambiente Tumoral
4.
Cancer Cell ; 41(10): 1774-1787.e9, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37774699

RESUMO

Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.


Assuntos
Neoplasias , Linfócitos T , Humanos , Linfócitos T/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Purina-Núcleosídeo Fosforilase/genética , Imunoterapia , Proteína-Arginina N-Metiltransferases/genética
5.
J Clin Immunol ; 43(8): 2062-2075, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726596

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive combined immunodeficiency. The phenotype is profound T cell deficiency with variable B and NK cell functions and results in recurrent and persistent infections that typically begin in the first year of life. Neurologic findings occur in approximately two-thirds of patients. The mechanism of neurologic abnormalities is unclear. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for PNP deficiency. METHODS: We report here six patients from five unrelated families with PNP deficiency treated in two centers in Turkey. We evaluated the neurological status of patients and compared to post-transplantation period if available. Then, we performed PubMed, Google Scholar, and Researchgate searches using the terms "PNP" and "hematopoietic stem cell transplantation" to find all reported cases of PNP transplantation and compared to our cohort. RESULTS: Six patients were treated in two centers in Turkey. One patient died from post-transplant complications. The other four patients underwent successful HSCT with good immune reconstitution after transplantation (follow-up 21-48 months) and good neurological outcomes. The other patient with a new mutation is still waiting for a matching HLA donor. DISCUSSION: In PNP deficiency, clinical manifestations are variable, and this disease should be considered in the presence of many different clinical findings. Despite the comorbidities that occurred before transplantation, HSCT currently appears to be the only treatment option for this disease. HSCT not only cures immunologic disorders, but probably also improves or at least stabilizes the neurologic status of patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doenças da Imunodeficiência Primária , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Purina-Núcleosídeo Fosforilase/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/terapia , Doenças da Imunodeficiência Primária/etiologia , Erros Inatos do Metabolismo da Purina-Pirimidina/terapia
6.
World J Microbiol Biotechnol ; 39(10): 286, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606812

RESUMO

2'-deoxyguanosine is a key medicinal intermediate that could be used to synthesize anti-cancer drug and biomarker in type 2 diabetes. In this study, an enzymatic cascade using thymidine phosphorylase from Escherichia coli (EcTP) and purine nucleoside phosphorylase from Brevibacterium acetylicum (BaPNP) in a one-pot whole cell catalysis was proposed for the efficient synthesis of 2'-deoxyguanosine. BaPNP was semi-rationally designed to improve its activity, yielding the best triple variant BaPNP-Mu3 (E57A/T189S/L243I), with a 5.6-fold higher production of 2'-deoxyguanosine than that of wild-type BaPNP (BaPNP-Mu0). Molecular dynamics simulation revealed that the engineering of BaPNP-Mu3 resulted in a larger and more flexible substrate entrance channel, which might contribute to its catalytic efficiency. Furthermore, by coordinating the expression of BaPNP-Mu3 and EcTP, a robust whole cell catalyst W05 was created, capable of producing 14.8 mM 2'-deoxyguanosine (74.0% conversion rate) with a high time-space yield (1.32 g/L/h) and therefore being very competitive for industrial applications.


Assuntos
Bacillaceae , Diabetes Mellitus Tipo 2 , Humanos , Purina-Núcleosídeo Fosforilase/genética , Escherichia coli/genética , Desoxiguanosina
7.
J Clin Immunol ; 43(7): 1623-1639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328647

RESUMO

Purine nucleoside phosphorylase deficient severe combined immunodeficiency (PNP SCID) is one of the rare autosomal recessive primary immunodeficiency disease, and the data on epidemiology and outcome are limited. We report the successful management of a child with PNP SCID and present a systematic literature review of published case reports, case series, and cohort studies on PNP SCID listed in PubMed, Web of Science, and Scopus from 1975 until March 2022. Forty-one articles were included from the 2432 articles retrieved and included 100 PNP SCID patients worldwide. Most patients presented with recurrent infections, hypogammaglobulinaemia, autoimmune manifestations, and neurological deficits. There were six reported cases of associated malignancies, mainly lymphomas. Twenty-two patients had undergone allogeneic hematopoietic stem cell transplantation with full donor chimerism seen mainly in those receiving matched sibling donors and/or conditioning chemotherapy before the transplant. This research provides a contemporary, comprehensive overview on clinical manifestations, epidemiology, genotype mutations, and transplant outcome of PNP SCID. These data highlight the importance of screening for PNP SCID in cases presented with recurrent infections, hypogammaglobulinaemia, and neurological deficits.


Assuntos
Agamaglobulinemia , Imunodeficiência Combinada Severa , Criança , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Purina-Núcleosídeo Fosforilase/genética , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/terapia , Agamaglobulinemia/complicações , Reinfecção/complicações , Mutação
8.
Artigo em Inglês | MEDLINE | ID: mdl-37301365

RESUMO

Methylthio-DADMe-immucillin-A (MTDIA) is an 86 picomolar inhibitor of 5'-methylthioadenosine phosphorylase (MTAP) with potent and specific anti-cancer efficacy. MTAP salvages S-adenosylmethionine (SAM) from 5'-methylthioadenosine (MTA), a toxic metabolite produced during polyamine biosynthesis. Changes in MTAP expression are implicated in cancer growth and development, making MTAP an appealing target for anti-cancer therapeutics. Since SAM is involved in lipid metabolism, we hypothesised that MTDIA alters the lipidomes of MTDIA-treated cells. To identify these effects, we analysed the lipid profiles of MTDIA-treated Saccharomyces cerevisiae using ultra-high resolution accurate mass spectrometry (UHRAMS). MTAP inhibition by MTDIA, and knockout of the Meu1 gene that encodes for MTAP in yeast, caused global lipidomic changes and differential abundance of lipids involved in cell signaling. The phosphoinositide kinase/phosphatase signaling network was specifically impaired upon MTDIA treatment, and was independently validated and further characterised via altered localization of proteins integral to this network. Functional consequences of dysregulated lipid metabolism included a decrease in reactive oxygen species (ROS) levels induced by MTDIA that was contemporaneous with changes in immunological response factors (nitric oxide, tumour necrosis factor-alpha and interleukin-10) in mammalian cells. These results indicate that lipid homeostasis alterations and concomitant downstream effects may be associated with MTDIA mechanistic efficacy.


Assuntos
Fosfatidilinositóis , Purina-Núcleosídeo Fosforilase , Animais , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , S-Adenosilmetionina/metabolismo , Oxirredução , Mamíferos/metabolismo
9.
Oncotarget ; 14: 178-187, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36913304

RESUMO

INTRODUCTION: Homozygous deletion of MTAP upregulates de novo synthesis of purine (DNSP) and increases the proliferation of neoplastic cells. This increases the sensitivity of breast cancer cells to DNSP inhibitors such as methotrexate, L-alanosine and pemetrexed. MATERIALS AND METHODS: 7,301 cases of MBC underwent hybrid-capture based comprehensive genomic profiling (CGP). Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA and microsatellite instability (MSI) was determined on 114 loci. Tumor cell PD-L1 expression was determined by IHC (Dako 22C3). RESULTS: 208 (2.84%) of MBC featured MTAP loss. MTAP loss patients were younger (p = 0.002) and were more frequently ER- (30% vs. 50%; p < 0.0001), triple negative (TNBC) (47% vs. 27%; p < 0.0001) and less frequently HER2+ (2% vs. 8%; p = 0.0001) than MTAP intact MBC. Lobular histology and CDH1 mutations were more frequent in MTAP intact (14%) than MTAP loss MBC (p < 0.0001). CDKN2A (100%) and CDKN2B (97%) loss (9p21 co-deletion) were significantly associated with MTAP loss (p < 0.0001). Likely associated with the increased TNBC cases, BRCA1 mutation was also more frequent in MTAP loss MBC (10% vs. 4%; p < 0.0001). As for immune checkpoint inhibitors biomarkers, higher TMB >20 mut/Mb levels in the MTAP intact MBC (p < 0.0001) and higher PD-L1 low expression (1-49% TPS) in the MTAP loss MTAP (p = 0.002) were observed. CONCLUSIONS: MTAP loss in MBC has distinct clinical features with genomic alterations (GA) affecting both targeted and immunotherapies. Further efforts are necessary to identify alternative means of targeting PRMT5 and MTA2 in MTAP-ve cancers to benefit from the high-MTA environment of MTAP-deficient cancers.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/genética , Homozigoto , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Deleção de Sequência , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Genômica , Histona Desacetilases/genética , Proteínas Repressoras/genética , Proteína-Arginina N-Metiltransferases/genética
10.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768477

RESUMO

Mammalian purine nucleoside phosphorylase (PNP) is biologically active as a homotrimer, in which each monomer catalyzes a reaction independently of the others. To answer the question of why the native PNP forms a trimeric structure, we constructed, in silico and in vitro, the monomeric form of the enzyme. Molecular dynamics simulations showed different geometries of the active site in the non-mutated trimeric and monomeric PNP forms, which suggested that the active site in the isolated monomer could be non-functional. To confirm this hypothesis, six amino acids located at the interface of the subunits were selected and mutated to alanines to disrupt the trimer and obtain a monomer (6Ala PNP). The effects of these mutations on the enzyme structure, stability, conformational dynamics, and activity were examined. The solution experiments confirmed that the 6Ala PNP mutant occurs mainly as a monomer, with a secondary structure almost identical to the wild type, WT PNP, and importantly, it shows no enzymatic activity. Simulations confirmed that, although the secondary structure of the 6Ala monomer is similar to the WT PNP, the positions of the amino acids building the 6Ala PNP active site significantly differ. These data suggest that a trimeric structure is necessary to stabilize the geometry of the active site of this enzyme.


Assuntos
Simulação de Dinâmica Molecular , Purina-Núcleosídeo Fosforilase , Animais , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Mamíferos/metabolismo , Domínio Catalítico , Estrutura Secundária de Proteína
11.
Plant Biotechnol J ; 21(4): 726-741, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36593511

RESUMO

Under field conditions, plants are often simultaneously exposed to several abiotic and biotic stresses resulting in significant reductions in growth and yield; thus, developing a multi-stress tolerant variety is imperative. Previously, we reported the neofunctionalization of a novel PNP family protein, Putranjiva roxburghii purine nucleoside phosphorylase (PRpnp) to trypsin inhibitor to cater to the needs of plant defence. However, to date, no study has revealed the potential role and mechanism of either member of this protein group in plant defence. Here, we overexpressed PRpnp in Citrus aurantifolia which showed nuclear-cytoplasmic localization, where it functions in maintaining the intracellular purine reservoir. Overexpression of PRpnp significantly enhanced tolerance to salt, oxidative stress, alkaline pH, drought and two pests, Papilio demoleus and Scirtothrips citri in transgenic plants. Global gene expression studies revealed that PRpnp overexpression up-regulated differentially expressed genes (DEGs) related to ABA- and JA-biosynthesis and signalling, plant defence, growth and development. LC-MS/MS analysis validated higher endogenous ABA and JA accumulation in transgenic plants. Taken together, our results suggest that PRpnp functions by enhancing the endogenous ABA and JA, which interact synergistically and it also inhibits trypsin proteases in the insect gut. Also, like other purine salvage genes, PRpnp also regulates CK metabolism and increases the levels of CK-free bases in transgenic Mexican lime. We also suggest that PRpnp can be used as a potential candidate to develop new varieties with improved plant vigour and enhanced multiple stress resistance.


Assuntos
Ácido Abscísico , Citrus , Ácido Abscísico/metabolismo , Cromatografia Líquida , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Espectrometria de Massas em Tandem , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Citrus/genética , Secas
12.
Cancer Rep (Hoboken) ; 6(2): e1708, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253876

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) gene transfer represents a promising approach to treatment of head and neck malignancies. We tested recombinant adenovirus already in phase I/II clinical testing and leading-edge patient-derived xenografts (PDX) as a means to optimize this therapeutic strategy. METHODS: Our experiments investigated purine base cytotoxicity, PNP enzyme activity following treatment of malignant tissue, tumor mass regression, viral receptor studies, and transduction by tropism-modified adenovirus. RESULTS: Replication deficient vector efficiently transduced PDX cells and mediated significant anticancer effect following treatment with fludarabine phosphate in vivo. Either 6-methylpurine or 2-fluoroadenine (toxic molecules generated by the PNP approach) ablated head and neck cancer cell proliferation. High levels of adenovirus-3 specific receptors were detected in human tumor models, and vector was evaluated that utilizes this pathway. CONCLUSIONS: Our studies provide the scientific foundation necessary to improve PNP prodrug cleavage and advance a new treatment for head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Xenoenxertos , Vetores Genéticos , Terapia Genética , Adenoviridae/genética
13.
Arch Iran Med ; 26(12): 712-716, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431953

RESUMO

Two Iranian patients with purine nucleoside phosphorylase (PNP) deficiency are described in terms of their clinical and molecular evaluations. PNP deficiency is a rare form of combined immunodeficiency with a profound cellular defect. Patients with PNP deficiency suffer from variable recurrent infections, hypouricemia, and neurological manifestations. Furthermore, patient 1 developed mild cortical atrophy, and patient 2 presented developmental delay, general muscular hypotonia, and food allergy. The two unrelated patients with developed autoimmune hemolytic anemia and T cells lymphopenia and eosinophilia were referred to Immunology, Asthma and Allergy Research Institute (IAARI) in 2019. After taking blood and DNA extraction, genetic analysis of patient 1 was performed by PCR and direct sequencing and whole exome sequencing was applied for patient 2 and the result was confirmed by direct sequencing in the patient and his parents. The genetic result showed two novel variants in exon 3 (c.246_285+9del) and exon 5 (c.569G>T) PNP (NM_000270.4) in the patients, respectively. These variants are considered likely pathogenic based on the American College of Medical Genetics and Genomics (ACMG) guideline. PNP deficiency has a poor prognosis; therefore, early diagnosis would be vital to receive hematopoietic stem cell transplantation (HSCT) as a prominent and successful treatment.


Assuntos
Anemia Hemolítica Autoimune , Doenças da Imunodeficiência Primária , Purina-Núcleosídeo Fosforilase , Humanos , Anemia Hemolítica Autoimune/genética , Eosinofilia/genética , Irã (Geográfico) , Mutação , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
14.
J Transl Med ; 20(1): 620, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572880

RESUMO

Glioblastoma is the most lethal form of brain tumor with a recurrence rate of almost 90% and a survival time of only 15 months post-diagnosis. It is a highly heterogeneous, aggressive, and extensively studied tumor. Multiple studies have proposed therapeutic approaches to mitigate or improve the survival for patients with glioblastoma. In this article, we review the loss of the 5'-methylthioadenosine phosphorylase (MTAP) gene as a potential therapeutic approach for treating glioblastoma. MTAP encodes a metabolic enzyme required for the metabolism of polyamines and purines leading to DNA synthesis. Multiple studies have explored the loss of this gene and have shown its relevance as a therapeutic approach to glioblastoma tumor mitigation; however, other studies show that the loss of MTAP does not have a major impact on the course of the disease. This article reviews the contrasting findings of MTAP loss with regard to mitigating the effects of glioblastoma, and also focuses on multiple aspects of MTAP loss in glioblastoma by providing insights into the known findings and some of the unexplored areas of this field where new approaches can be imagined for novel glioblastoma therapeutics.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo
15.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 12): 416-422, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458621

RESUMO

The 1.72 Šresolution structure of purine nucleoside phosphorylase from Geobacillus stearothermophilus, a thermostable protein of potential interest for the biocatalytic synthesis of antiviral nucleoside compounds, is reported. The structure of the N-terminally His-tagged enzyme is a hexamer, as is typical of bacterial homologues, with a trimer-of-dimers arrangement. Unexpectedly, several residues of the recombinant tobacco etch virus protease (rTEV) cleavage site from the N-terminal tag are located in the active site of the neighbouring subunit in the dimer. Key to this interaction is a tyrosine residue, which sits where the nucleoside ring of the substrate would normally be located. Tag binding appears to be driven by a combination of enthalpic, entropic and proximity effects, which convey a particularly high affinity in the crystallized form. Attempts to cleave the tag in solution yielded only a small fraction of untagged protein, suggesting that the enzyme predominantly exists in the tag-bound form in solution, preventing rTEV from accessing the cleavage site. However, the tagged protein retained some activity in solution, suggesting that the tag does not completely block the active site, but may act as a competitive inhibitor. This serves as a warning that it is prudent to establish how affinity tags may affect protein structure and function, especially for industrial biocatalytic applications that rely on the efficiency and convenience of one-pot purifications and in cases where tag removal is difficult.


Assuntos
Geobacillus stearothermophilus , Purina-Núcleosídeo Fosforilase , Purina-Núcleosídeo Fosforilase/genética , Nucleosídeos , Cristalografia por Raios X , Biocatálise
16.
J Biol Chem ; 298(12): 102615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265580

RESUMO

Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.


Assuntos
NAD , Purina-Núcleosídeo Fosforilase , Humanos , Camundongos , Animais , NAD/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Compostos de Piridínio , Mamíferos/metabolismo
17.
J Biol Chem ; 298(9): 102367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963436

RESUMO

Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with symmetric dimethylarginine (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the protein arginine methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found because of catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by MTA occurs within 48 h, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element site located upstream of Myc and other promoters. Using a transcription reporter construct containing the far upstream element site, we demonstrate that MTA addition can reduce transcription, suggesting that the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.


Assuntos
Arginina , Desoxiadenosinas , Purina-Núcleosídeo Fosforilase , Arginina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Humanos , Metionina/metabolismo , Metilação , Poliaminas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Tionucleosídeos
18.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653193

RESUMO

Purine nucleoside phosphorylase (PNP) enables the breakdown and recycling of guanine nucleosides. PNP insufficiency in humans is paradoxically associated with both immunodeficiency and autoimmunity, but the mechanistic basis for these outcomes is incompletely understood. Here, we identify two immune lineage-dependent consequences of PNP inactivation dictated by distinct gene interactions. During T cell development, PNP inactivation is synthetically lethal with downregulation of the dNTP triphosphohydrolase SAMHD1. This interaction requires deoxycytidine kinase activity and is antagonized by microenvironmental deoxycytidine. In B lymphocytes and macrophages, PNP regulates Toll-like receptor 7 signaling by controlling the levels of its (deoxy)guanosine nucleoside ligands. Overriding this regulatory mechanism promotes germinal center formation in the absence of exogenous antigen and accelerates disease in a mouse model of autoimmunity. This work reveals that one purine metabolism gene protects against immunodeficiency and autoimmunity via independent mechanisms operating in distinct immune lineages and identifies PNP as a potentially novel metabolic immune checkpoint.


Assuntos
Síndromes de Imunodeficiência , Purina-Núcleosídeo Fosforilase , Animais , Autoimunidade , Humanos , Camundongos , Nucleosídeos de Purina , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Linfócitos T , Receptor 7 Toll-Like
19.
Int J Biol Sci ; 18(7): 3034-3047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541910

RESUMO

5'-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway and has been reported to suppress tumorigenesis. The MTAP gene is located at 9p21, a chromosome region often deleted in breast cancer (BC). However, the clinical and biological significance of MTAP in BC is still unclear. Here, we reported that MTAP was frequently downregulated in 41% (35/85) of primary BCs and 89% (8/9) of BC cell lines. Low expression of MTAP was significantly correlated with a poor survival of BC patients (P=0.0334). Functional studies showed that MTAP was able to suppress both in vitro and in vivo tumorigenic ability of BC cells, including migration, invasion, angiogenesis, tumor growth and metastasis in nude mice with orthotopic xenograft tumor of BC. Mechanistically, we found that downregulation of MTAP could increase the polyamine levels by activating ornithine decarboxylase (ODC). By treating the MTAP-repressing BC cells with specific ODC inhibitor Difluoromethylornithine (DFMO) or treating the MTAP-overexpressing BC cells with additional putrescine, metastasis-promoting or -suppressing phenotype of these MTAP-manipulated cells was significantly reversed, respectively. Taken together, our data suggested that MTAP has a critical metastasis-suppressive role by tightly regulating ODC activity in BC cells, which may serve as a prominent novel therapeutic target for advanced breast cancer treatment.


Assuntos
Neoplasias da Mama , Ornitina Descarboxilase , Purina-Núcleosídeo Fosforilase , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Baixo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Ornitina Descarboxilase/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo
20.
Histopathology ; 81(1): 65-76, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460532

RESUMO

AIMS: Malignant mesothelioma (MM) of the tunica vaginalis (TV) is a rare and aggressive tumour, and the molecular features and staining profile with contemporary immunohistochemical (IHC) biomarkers are largely unexplored. We characterise the clinicopathological, molecular and IHC features of MM (n = 13) and mesothelial neoplasms of uncertain malignant potential (MUMP) (n = 4). METHODS AND RESULTS: Targeted next-generation sequencing was performed on seven MMs and two MUMPs. IHC was performed for methylthioadenosine phosphorylase (MTAP), BRCA1-associated protein 1 (BAP1) and SRY-box transcription factor 6 (SOX6). Thirteen adenomatoid tumours were also assessed with SOX6. MM were epithelioid (seven of 13) or biphasic (six of 13). In MM, NF2 (five of seven; 71%), CDKN2A (three of seven; 43%) and BAP1 (two of seven; 29%) were most frequently altered. Non-recurrent driver events were identified in PTCH1 and TSC1. In contrast, none of these alterations were identified in MUMPs; however, one MUMP harboured a TRAF7 missense mutation. By IHC, loss of MTAP (two of 12; 17%) and BAP1 (two of nine; 22%) was infrequent in MM, whereas both were retained in the MUMPs. SOX6 was positive in nine of 11 (82%) MMs and negative in all MUMPs and adenomatoid tumours. CONCLUSIONS: Testicular MM exhibit a similar mutational profile to those of the pleura/peritoneum; however, alterations in CDKN2A and BAP1 are less common. These findings suggest that although MTAP and BAP1 IHC are specific for MM, their sensitivity in testicular MMs appears lower. In addition, rare tumours may harbour targetable alterations in driver genes (PTCH1 and TSC1) that are unusual in MMs at other anatomical sites. SOX6 is sensitive for MM; accordingly, the presence of SOX6 expression argues against a benign neoplastic process.


Assuntos
Tumor Adenomatoide , Mesotelioma Maligno , Neoplasias Testiculares , Tumor Adenomatoide/genética , Tumor Adenomatoide/patologia , Biomarcadores Tumorais/genética , Humanos , Imuno-Histoquímica , Masculino , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Purina-Núcleosídeo Fosforilase/genética , Fatores de Transcrição SOXD/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...